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This article considers building mathematical models with financial data by using data mining 
techniques. In general, data mining methods such as neural networks and decision trees can be a 
useful addition to the techniques available to the financial analyst. However, the data mining 
techniques tend to require more historical data than the standard models and, in the case of neural 
networks, can be difficult to interpret. 

Stock market returns and foreign currency exchange rates 

Data can be thought to fall into one of four categories as follows. 

1. Five time series: index value at open, index value at close, highest index value, lowest index 
value and trading volume. 

2. Fundamental factors: e.g., the price of gold, retail sales index, industrial production indices, 
foreign currency exchange rates. 

3. Lagged returns from the time series of interest. 

4. Technical factors: variables that are functions of one or more time series, e.g., moving 
averages. 

The standard approach to modelling stock market returns or exchange rates is to model the univariate 
time-series with autoregressive (AR) and moving average (MA) models. A trader can determine an 
appropriate number of lags for AR and ARMA models based on experience and by analysing the time 
series data. Similarly, an appropriate number of regimes for SETAR (self-exciting transition AR) and 
STAR (smooth transition AR) models can be determined. These models are deterministic in the sense 
that they attempt to use mathematical equations to describe the process that generates the time-
series. The advantage of these models lies in their interpretability. 

Another approach, drawn from data mining, is to adopt a model that is flexible in the sense that it can 
approximate a wide class of functions with high accuracy. Such models are non-parametric in the 
sense that there need not be a direct relationship between the parameter values of a fitted model and 
the data. The advantages of using such a model include 

1. The ability to model highly complex functions. 

2. The ability to use a high number of variables in the model and, therefore, to include other data 
(i.e., fundamental and technical factors) in addition to lagged time series data. 

The disadvantage of non-parametric models is that they are not easy to interpret. 

In the case of data mining time series data, the model of choice is a neural network. By adjusting the 
number of free parameters associated with a model, a trader controls its flexibility. Often, cross-
validation, or hold-out data, is used to determine a suitable value for the number of free parameters 
contained in a neural network structure. The neural network most commonly used in financial 
applications is a multi-layer perceptron (MLP) with a single hidden layer of nodes. 
The problem of predicting stock market returns or exchange rates at time t+1 can be cast as either a 
regression or classification problem. Whereas the regression problem for exchange rate data involves 
modelling the actual exchange rate, the classification problem involves predicting whether the 
exchange rate has increased or decreased. 
Applications that involve modelling returns from the stock market include portfolio management and 
trading futures (see below). 

MLP regression example: portfolio management 

The regression case involves predicting the (raw) return values. Such predictions can be used to 
manage a portfolio of n stocks as follows. 
Suppose that historical data for N (N > n) stocks is used to fit N multi-layer perceptrons. At the end of 
each week the MLPs are re-fitted to include the latest historical data. For example, suppose company 
Z's pension fund has been managing a portfolio of $100 million since December 1993 using multi-



layer perceptrons. The fund monitors a pool of 1,000 U.S. stocks on a weekly basis. For each of these 
stocks there is a MLP which models the future performance of the stock as a function of the stock's 
exposure to 40 fundamental and technical factors, and gives an estimate of its weekly price change. 
The company then selects a portfolio of the top n stocks and allocates the fund proportionately to 
predicted returns. 

MLP classification example: trading futures 

As an example of a data mining classifier, consider the problem of trading a future of stock A at price 
B on date C by using a neural network. 
Firstly, the historical data is prepared. At each time step, data is classified into one of two categories 
according to whether it was profitable to buy or sell stock A at price B on date C: 

1. Long: buy the stock on date C. 

2. Short: sell the stock on date C. 

Having fitted a model with this historical data, the model can be used to predict a profitable position at 
time t+1 (e.g., the next day or week). At the end of each time step the model is updated to include the 
new historical data. 

By the time date C arrives, the trader should be in a profitable position (either long or short) given the 
current market value of stock A. 

Trading rules 
Trading rules can be determined from data with a categorical outcome, e.g., buy or sell, rise or fall. 
Such rules take the form of a set of conditional statements and an action, e.g., 

IF CONDITION1 AND CONDITION2 THEN ACTION 

and can be found by viewing a fitted decision tree model. Given an appropriate historical data set, this 
approach could be used to either validate a rule thought to exist, or generate new rules and ideas. 

Suppose that a decision is fitted using historical data. Each internal node in the tree is a test on one of 
the variables used to predict the outcome in the historical data. If the variable, say X1, takes 
continuous values, this test is either  

(X1 >= VALUE) or  (X1 < VALUE), 

where X1 and VALUE are determined by the algorithm that fits the decision tree. If the variable, say 
X2, can take one of m discrete values, this test is one of 

{(X2 = i)}, for i=1, 2, m, 

where X2 and i are chosen by the fitting algorithm. Leaf nodes contain the actions, e.g., buy or sell. 
Thus tracing down the tree from the root to each leaf node will give a set of rules. 
For example, historical data could be collected and a decision tree built to test the validity of the 
following rule. 
"When the 10-day moving average crosses above the 30-day moving average and both moving 
averages are increasing it is time to buy" 

Component Approach 
Analysts seeking new insights from massive databases of tick data and similar market information can 
now accelerate their development of customized data mining applications by using NAG Data Mining 
Components as building blocks for their applications. The NAG Data Mining Components are 
expected to free quantitative analysts from needing to re-invent basic data mining routines, enabling 
the development of specialized data mining applications more quickly and at lower cost. Such 
exhaustive exploration of financial databases is expected to give organisations a competitive 



advantage in designing new derivative products, discovering asset mis-pricings, and in identifying 
similar routes to maximize portfolio returns. 
The NAG Data Mining Components can be used for each stage of the modeling process -data 
preparation (case wise deletion and dummy variables generation), data transformation (principal 
component analysis and data scaling), and model building (k-means and hierarchical clustering; k-
nearest neighbours; decision tree analysis; multi-layer perceptron neural networks; logistic regression; 
general multiple regression). Application developers can use these components in their own 
application designs using standard development tools. 
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